
 1

Overview of Secure Controls Framework
Implementation

Version 1. February 23, 2004.
A. D. Petrov, apetrov@fnal.gov

The Secure Controls Framework (SCF) was proposed in [1] as a way to improve
the communication between Java™ controls applications and server-side data
providers over RMI. This document gives an overview of the core SCF
implementation, existed now.

Architecture
SCF consists of:

1. Client tier, which initiates and maintains RMI connections to the server
and provides the high-level API.

2. Data server, which accepts the incoming connections and handles data
requests. It can be started either standalone, or along with the Data
Acquisition Engine (DAE).

3. Kerberos module, which provides Kerberos V5 user authentication.

Client and server parts communicate over RMI, Remote Method Invocation
protocol. SSL/TLS is used by RMI as a secure transport level for clientàserver
calls.

In order to be authenticated by SCF, the user must obtain the Kerberos ticket on
the local host by using an external utility, kinit or Leash32.

Implementation
All parts are implemented on J2SE version 1.4. The Kerberos module has some
small native program used to access the memory cache. The code is located in the
following packages:

Table 1. SCF code packages

Package Description Required on
the client

gov.fnal.controls.8
scf

Implementation of the client-side API ü

gov.fnal.controls.8
scf.example

Test utilities and examples

 2

gov.fnal.controls.8
scf.items

Data acquisition support ü

gov.fnal.controls.8
scf.more

Miscellaneous Swing components ü

gov.fnal.controls.8
scf.naming

Naming service support ü

gov.fnal.controls.8
scf.remote

Client-server communication support ü

gov.fnal.controls.8
scf.server

Implementation of services, and
supporting classes

gov.fnal.controls.8
servers.scf

Server loader and web manager

gov.fnal.controls.8
tools.kerberos.base

Kerberos module ü

The client tier does not require any additional libraries. The server needs
gov.fnal.controls.db and jconn2.jar in the classpath for the database
access.

Kerberos Module

This module provides Kerberos V5 user authentication.

In SCF, the user authentication is initiated by the server and consists of three
steps:

1. The client reads the cached Kerberos ticket and creates a Subject
representing the user.

2. Then, it prepares a token (equivalent of the forwarded ticket) in order to
pass user credentials to the server.

3. The server accepts the token and determines the remote user name.

The Kerberos module API is implemented in Krb5 class. It has five static
methods:

public static Subject login()

public static void logout()
public static String getPrincipalName()

 3

public static byte[] initGSSContext(
 String serverPrincipal
)
public static GSSContext acceptGSSContext(
 String serverPrincipal, byte[] context
)

The login method starts the authentication. It tries to acquire credentials of the
local user or process, and, if successful, returns a Subject associated with it.
The logout method clears the internal variables and resets the Subject. The
implementation of login and logout methods is based on Java Authentication
and Authorization Service (JAAS) API [2].

Krb5 supports two types of authentication: user authentication and service
authentication.

By default, if no additional settings were made, the Kerberos module performs
the user authentication. Krb5 creates an instance of FermiLoginModule that
reads the ticket from a cache. Technically, the file cache is read by the
CacheReader*; on Windows, the memory cache is loaded through Java Native
Interface (JNI) by WinCacheAdapter.

Table 2. Cache reader compatibility

Operating System Cache Locations

Windows API:
FILE:<user-tmp-dir>\krb5cc

SunOS, FreeBSD, Linux $KRB5CCNAME
FILE:/tmp/krb5cc_<uid>

MacOS† FILE:/tmp/krb5cc_<uid>

In order to accept the incoming tokens, a process running on the server must be
authenticated with the service principal. This is the service authentication. The
service does not have cached credentials. It reads the Kerberos password from a
keytab, presents this password along with the principal name to the Kerberos
server, and acquires the credentials. In order to perform the service

* The generic analog, sun.security.krb5.internal.ccache.FileCredentialsCache,
apparently has a bug in the integer format representation that prevents it from being used on
FreeBSD.

† There is also a memory cache in OS X, but the access to it is not yet implemented.

 4

authentication, the keytab file name and the service principal name must be
specified as system properties (see Krb5 JavaDoc for details).

The Krb5’s initGSSContext and acceptGSSContext methods are used to
establish a common security context between two peers using locally acquired
credentials. The first one is called on the client side. It generates a token that can
be sent to the remote host in order to present the local user. The
acceptGSSContext method accepts the incoming token on the remote host.

The implementation of initGSSContext and acceptGSSContext methods is
based on Java Generic Security Service API (JGSS-API) [3]

Tests have shown that:

• The ticket can be accepted only by the service, whose principal name was
specified in initGSSContext method.

• The ticket is valid in a limited period of time (around couple of minutes).

• The ticket is not reusable and can not be presented more than once.

Some Authentication Issues

The clients running in the Control rooms can not be authenticated by using
cached Kerberos tickets, because those workstations do not have it. In this case,
an alternative way of authentication by IP address is used.

The list of exempt hosts is stored in the database along with corresponding user
names. Before requesting Kerberos user authentication, the server checks
whether the client is running on an exempt node, and, if so, skips the explicit
authentication procedure. The same mechanism is used in Application Index
web interface [5].

As stated in [1], all clients are assigned to 5 logical zones, according to their IP
address. A security policy (authentication lifetime, presence of exempt host, etc.)
is defined for each zone. The zone support and exempt host authentication are
implemented in ZoneConfig.class. More security policy attributes will be
added as necessary.

Client Tier

The principal class of the SCF client tier is DataConnection. This is a singleton
without public constructors. The shared instance of the class can be obtained
through getInstance static method. The API provided by DataConnection
allows the user to control the connection (connect and disconnect methods)
and check the connection status (getStatus and isAlive methods). In order
to be notified about connection status changes, the
ConnectionStatusListener can be used, as well. The DataConnection

 5

class also provides a way for other client-side parts to communicate with the
data server (e.g., getNamingFactory method for JNDI).

The DataConnection class is able to restore the connection if the server
becomes unavailable. The connection timeout can be set by setTimeout
method. Most of the underlying client requests do not depend on whether the
server is physically available in a specific moment; they are cached until the
communication is restored.

Before opening the connection, the remote object ClientContextImpl is
created and exported on a random TCP/IP port. This object is used by the server
to get client properties and to start the authentication. Besides that, the client
creates a random session ID (by a secure random generator) for every
connection.

Data Server

The SCF data server has a pluggable architecture. The main class,
gov.fnal.controls.servers.scf.ScfServer works as a loader and starts
some number of services. All services are described in a XML configuration file.
The default file name is gov/fnal/controls/servers/scf/config.xml. It
can be overwritten in system properties.

Most of the services are remote RMI objects. Each of them is responsible for a
particular task and is exported on a fixed TCP/IP port.

• CheckpointImpl is responsible for checking the clients in and out,
authentication, and managing the connection pool.

• StorekeeperImpl provides database access for the client-side JNDI.
Currently supported objects are: ACNET devices, parameter pages, and a
Universal Repository of Serialized Objects.

• ForemanImpl is a bridge between the Data Acquisition Engine and
client-side DAQ API (under development).

One service, the WebManager, is not an RMI object. It implements a simple
web-server, which provides the user interface for monitoring and restarting.

The server activity logging is implemented on Java Logging API.

Transport Level

SCF is using both secured and unsecured connections in different situations:

• Secured connection is used for remote calls originated from the client.

• Unsecured connection is used for the remote calls originated from the
server, and for RMI repository calls.

 6

Secured connection is based on SSL/TLS protocol with authentication. It is
implemented in SecureClientSocketFactory and
SecureServerSocketFactory. The first class is used on both server and
client, the second one—only on the server. SSLCiphers.class defines the
used cipher suites.

The transport level authentication is based on X.509 certificates. The server-side
certificate (contains both private and public keys) is saved in a Java keystore.
This keystore (a file) and the corresponding keystore password are stored in a
safe location, defined in the server configuration file. The client-side certificate
(public key only) is distributed as a file,
gov/fnal/controls/scf/remote/scf.cer, available in application
classpath. If applications are started from a properly signed jar files, scf.cer
does not necessarily have to be signed by a certification authority and can be self-
issued.

Connection Scenario

The following diagram shows up the connection procedure:

Fig. 1. Connection scenario

 7

1. The client exports a ClientContext instance and creates a random
session ID.

2. The client calls checkpoint.checkIn with the clientContext and
session ID as parameters.

3. The server makes sure that:

a. The request originates from the same IP address as specified in the
clientContext object;

b. The connection pool does not have another client with the same
session ID.

4. If these tests succeed, the server accepts the client and adds it in the
connection pool; otherwise a SecurityException is thrown.

5. The client gets authenticated:

a. If the client is running on an exempt host, the user name is taken
from the database.

b. Otherwise, the server calls clientContext.authenticate; the
client creates the token and calls checkpoint.submitToken; the
server verifies this token.

c. If the authentication succeeds by either way, the server notifies the
client by calling clientContext.setUserName; otherwise, the
server calls clientContext.rejectClient and remove this
connection from the pool.

6. After the client is authenticated, it is allowed to use other services (remote
objects). The session ID is passed every time as one of the remote method
call arguments and verified by the server.

7. In order to disconnect, the client calls clientContext.checkOut.

8. A routine on the server side periodically checks all connected clients by
calling clientContext.getTime. If the client fails to respond several
times, it gets disconnected. If the client authentication has expired, the
client gets reauthenticated.

 8

Authorization Issues

The methods of the user authorization depend on services.

The StorekeeperImpl gets permissions from custom database tables.
Read-only access to ACNET devices and parameter pages is allowed for all
authenticated users; writing is prohibited. The Universal Repository of Serialized
Objects has more flexible UNIX-like security system, where permissions and the
object owner are represented as DirContext’s attributes.

The ForemanImpl relies on the DAE security system and does not perform the
authorization itself. The Kerberos user principal is translated to the VMS user
name and, along with node and service attributes, is used by the engine. The
DAE is using the existing mechanisms to define the user, node, and service
privileges.

Analysis of Security

The ultimate goal of the SCF security system is to prevent unauthorized changes
of data, namely: making DAQ settings and altering objects stored in the
database. The information traveling in the opposite direction, from the server to
the user, is not sensitive and it is unlikely that it can be targeted.

SCF does not address denial-of-service attacks. This problem has to be solved
rather by deploying of several groups of servers, where each group is assigned to
serve some specific IP zone.

As appears from the previous chapters, the connection security is based on 3
points:

1. Session ID, used in all remote calls;

2. GSS token that represents user credentials;

3. Verification of IP address.

There is no evidence, so far, that the current implementation of RMI protocol has
any particular vulnerability. Also, there is no evidence against Kerberos.
Theoretically, the potential intruder has the following options:

1. Using someone else’s session ID:

a. Steal an existing session ID of the authenticated user (either by
intercepting the communication and breaking SSL, or by another
way);

b. Change somehow the own IP address and use the stolen session ID
to connect from behalf of the other user.

Method of protection: keeping session ID in secrecy.

2. Replacing the server:

 9

a. Steal the SCF source code and make certain changes in server and
client parts that do not affect remote interfaces;

b. Starts the fake server;

c. Somehow redirect SCF requests to the own server;

d. Acquire the GSS token from the innocent client;

e. Connect to the real server and present this token.

Method of protection: transport level authentication.

References
4. A. D. Petrov. Proposals on a Secure RMI Connection for Client Applications.

Fermilab Beams-doc-953. http://beamdocs.fnal.gov/cgi-
bin/public/DocDB/ShowDocument?docid=953&version=1

5. Java™ Authentication and Authorization Service (JAAS) Reference Guide.
http://java.sun.com/j2se/1.4.1/docs/guide/security/jaas/JAASRefGuide.html

6. M. Upadhyay, R. Marty. Single Sign-on Using Kerberos in Java. Sun
Microsystems, Inc. http://java.sun.com/j2se/1.4.1/docs/guide/security/jgss/single-
signon.html

7. L. Gong, G. Ellison, M. Dageforde. Inside Java™ 2 Platform Security, Second
Edition. Addison-Wesley ISBN 0-201-78791-1. p. 262.

8. Application Index web interface. http://www-bd.fnal.gov/appix

9. R. Lee. The JNDI Tutorial. http://java.sun.com/products/jndi/tutorial

